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ABSTRACT: Diffusion-ordered spectroscopy (DOSY) is
an important tool in NMR mixture analysis that has found
use in most areas of chemistry, including organic synthesis,
drug discovery, and supramolecular chemistry. Typically the
aim is to disentangle the overlaid, and often overlapped,
NMR spectra of individual mixture components and/or to
obtain size and interaction information from their respec-
tive diffusion coefficients. The most common processing
method, high-resolution DOSY, breaks down where com-
ponent spectra overlap; here multivariate methods can be
very effective, but only for small numbers (2�5) of compo-
nents. In this study, we present a hybrid method, local
covariance order DOSY (LOCODOSY), that breaks a
spectral data set into suitable windows and analyzes each
individually before combining the results. This approach
uses a multivariate algorithm (e.g., SCORE or DECRA) to
resolve only a small number of components in any given
window. Because a small spectral region should contain
signals from only a few components, even when the
spectrum as a whole contains many more, the total number
of resolvable chemical components rises dramatically. It is
demonstrated here that complete resolution of component
spectra can be achieved for mixtures that are much more
complex than could previously be analyzed with DOSY.
Thus, LOCODOSY is a powerful, flexible tool for proces-
sing NMR diffusion data of complex mixtures.

Diffusion-ordered spectroscopy (DOSY)1�3 is a method of
separating the individual NMR spectra of molecules in a

mixture according to their diffusion behavior, which in turn
typically depends on size (hydrodynamic radius) and inter-
molecular interactions.4�6 Although DOSY is strictly only a
data-processing method, the name has been widely adopted to
include the pulsed field gradient (PFG) NMR experiments
that can be used to produce data for DOSY processing. To
measure the diffusion coefficients of the components in a
mixture, a series of spectra with increasing gradient strength is
recorded. The increasing gradient strength causes progressive
attenuation of each signal; the extent of this attenuation
depends upon the rate at which the component responsible
for the signal diffuses.

A signal with an ideal (purely exponential) decay would be
described by the Stejskal�Tanner equation,7

S ¼ S0e
�Dγ2δ2g2Δ0 ð1Þ

where S is the signal amplitude, S0 is the signal amplitude had
there been no diffusion, D is the diffusion coefficient, δ is the
duration of the gradient pulse, γ is the gyromagnetic ratio, g is the
strength of the gradient, andΔ0 is the diffusion time corrected for
the effects of finite gradient pulse width. Inevitably, the experi-
mental signal deviates to some extent from a pure exponential
decay; as noted below, the effect of variation in the magnitude of
g across the sample is a major source of such deviation for many
probes.8

High-resolution DOSY (HR-DOSY)9 assumes that each signal
in the NMR spectrum contains only one component and fits the
corresponding decay to some form of eq 1. Provided that there is
no spectral overlap, impressive resolution in the diffusion dimen-
sion can be achieved using this method; peaks from a single
chemical component appear in a typical DOSY spectrum along a
horizontal line at the diffusion coefficient for the molecule.
However, in all but the simplest of mixtures, some signals overlap.
Two or more overlapping signals have superimposed decays that,
when fitted to a single exponential, typically (although not
always10) give a value of D intermediate between those for the
species involved. In heavily overlapped spectra, this can completely
prevent interpretation. An example of severe overlap can be seen in
Figure 1a between 1 and 2 ppm, where peaks from three chemical
components overlap to varying degrees, making this region
particularly difficult to interpret. All processing of DOSY data is
sensitive to any systematic error present; in this investigation, the
corrections for the effects of nonuniform PFGs were made where
necessary.11 Reference deconvolution12 was used to correct for a
variety of other sources of error stemming from hardware short-
comings (e.g., phase and frequency inconsistencies).

A variety of approaches can be employed to deal with the
consequences of spectral overlap. Extending the 2D DOSY
experiment to 3D DOSY (e.g., using HMQC13,14 or COSY15,16)
can significantly reduce the overlap. Unfortunately, this requires
much longer data acquisition times and more complicated proces-
sing and can still fail to resolve complex mixtures. Peak overlap can
also be efficiently reduced by collapsing the multiplet structure, as
in pure shift NMR;17 this can be a useful addition to DOSY when
sensitivity allows. For cases where overlap is unavoidable, various
processing techniques have been developed to enable resolution of
the diffusion dimension; these include fitting signal decays to a
sum of exponentials18,19 or even to continuous distributions.20,21

Such methods are very demanding with respect to the quality of
experimental data; these demands rise steeply with the number of
components. Thus, in Figure 1b, aDOSY plot has been constructed
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using biexponential fitting. It is clearer here than in Figure 1a that
there are three components present in the region (4�12)� 10�10

m2 s�1, but there is still significant ambiguity and the spectrum
remains difficult to interpret.

Themethods introduced so far are univariate, that is, they analyze
one spectral peak or one frequency at a time. Another approach
within which several applications have been developed is multi-
variate processing.Here, rather than just one peak, information from
the whole data set is used at the same time to identify similarly
attenuating signals across the spectrum and group them as one
chemical component (i.e., a single source of variance). The result is
to decompose an experimental data set into a set of 1D spectra, each
of which (ideally) represents one individual chemical component of
the mixture sample.22�25 Such a multivariate decomposition can be

described in matrix form as

X ¼ CST þ E ð2Þ

where the experimental data set (X) is described as a Kronecker
product of the decays (C) and the spectra (S), E is the matrix of
residuals, and T denotes the transpose.

The advantage of this approach is that decay information from
peaks in overlap-free regions of the spectrum is used to facilitate
the interpretation of the more complex parts, aiding in the
resolution of overlapped signals. However, such methods are
limited in the number of components they can resolve (3�4
appears to be a practical limit for mixtures of small molecules)
and therefore fail for more complex mixtures.

Figure 1. 2D DOSY plots produced by different processing methods, applied to data acquired on a Varian INOVA 400 MHz spectrometer from a
mixture of quinine (Q), geraniol (G), and camphene (C) in methanol-d4 (M) with TSP (T) as a reference. All processing was performed with
compensation for the effects of nonuniform field gradients.8 (a) HR-DOSY9 fitting; (b) biexponential fitting;18 (c) LOCODOSY processing using the
SCORE25 algorithm. The considerable overlap at 0�2 ppm impedes the interpretation of the HR-DOSY spectrum (a). In the biexponential fit (b), the
overlap is partially resolved, and in the LOCODOSY spectrum (c), all of the signals appear at the correct positions in the diffusion dimension.
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Here we present a new hybrid method, local covariance order
DOSY (LOCODOSY), that exploits the fact that while a mixture
spectrum may contain a large number of components, the
number of signals that overlap in any given region of the
spectrum is often very small. The principle is simple: take small,
separate windows of the spectrum and apply multivariate proces-
sing to each individually, with the aim of reducing the number of
components required per analysis while retaining the multi-
variate advantage. The results from processing these separate
windows with a multivariate method such as speedy component
resolution (SCORE)25 or the direct exponential curve resolution
algorithm (DECRA)22may then be combined into a standardDOSY
2D contour plot. Themethod has been implemented inMATLAB
version 2009a and built into the DOSY Toolbox,26 which can be
found on the Web27 or obtained directly from the corresponding
author. Also implemented in the Toolbox alongside LOCODOSY
is a set of basic clustering algorithms for automating the aggrega-
tion of the spectral fragments resolved by processing into complete
component spectra. This produces a 1D spectrum for each
identified component that can be compared with the 2D plot.
Manual selection and viewing of individual components, as well as
control over some key processing parameters, have also been
included to maximize flexibility.

The idea of local multivariate fitting of small spectral regions
has been described previously,28 and illustrated with synthetic
data, with the aim of improving the statistics of DOSY fitting for
nonoverlapped signals. Here, in contrast, we demonstrate the
power of local multivariate analysis for the decomposition of
overlapping spectra. It is shown that in appropriate cases (no
more than three overlapping signals, modest dynamic range),
this approach can almost double the number of chemical
components cleanly resolvable in real experimental data, as
illustrated by Figure 1c and Figure 2.

LOCODOSY requires a spectrum to be divided into suitable
windows, each containing the signals of only a few components,
before the independent multivariate decompositions are per-
formed. In most cases, this segmentation can be automated

(as was done for Figures 1c and 2), although manual division is
sometimes advantageous (see Figure 3). To segment the spec-
trum automatically, a threshold for signal intensity is set by the
user (just as inHR-DOSY), and contiguous areas of the spectrum
within which the peak intensity is greater than the threshold are
identified as windows to be processed.

A number of data points equivalent to ∼25 Hz is added to
either side of each window to ensure that the bases of all peaks are
included. This crude but effective algorithm performed well with
the data sets in Figures 1 and 2, but there is ample scope for more
complex approaches where appropriate. SCORE and DECRA
both require the number of components (i.e., the chemical rank)
for each window to be specified. Ideally, determination of the
chemical rank should be automatic, as each window in the
segmented spectrum could potentially have a different unknown
number of components. Many sophisticated methods for the
determination of chemical rank are available,29 but the need for
such a method was bypassed here using simple singular value
decomposition (SVD). Because the effect of overestimating the
number of components in SVD is to cause multivariate fitting to
fail in a predictable manner, it is simple to estimate the chemical
rank by decreasing the number of components until a satisfactory
result is obtained. The symptoms used here to identify an
overestimated chemical rank were (i) a fitted D value outside
the expected range [(0�25)� 10�10 m2 s�1 here] and/or (ii) a
component contributing less than a defined proportion (in
principle determined by the experimental noise level) of the
described variance (5% here). The multivariate methods used
independently and within LOCODOSY also fail when two
components have D values that are too similar to be resolved
(typically, a difference of ∼30% in D is required for resolution);
their spectra become combined and show an intermediate value
of D, as occurs when peaks overlap in HR-DOSY.

So far we have considered only samples in which the relative
concentrations of components are similar. This is where the
advantages of LOCODOSY are greatest. Where the data have
a high dynamic range, multivariate processing can struggle, as

Figure 2. 2D results produced by LOCODOSY processing (using DECRA22 for the multivariate decomposition) for data acquired on a Bruker Avance
IIþ 500MHz spectrometer. The sample contained seven components, all of which were successfully resolved: (a) dextran; (b) tartrazine; (c) ephedrine;
(d) TSP; (e) nicotinic acid; (f) ethanol; (g) HOD. The use of either SCORE25 or DECRA on the entire spectral width failed to resolve the individual
component spectra.
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smaller, less statistically significant signals become increasingly
difficult to separate from larger ones. One example of such a
mixture is the energy drink Red Bull Sugarfree, in which the
detectable signals span 3 orders of magnitude, from the very
strong citrate and taurine signals down to the very weak signals of
the B vitamins.30 Here the unsegmented SCORE processing
failed, showing very severe cross-talk between resultant spectra,
whereas HR-DOSY performs well until peaks begin to overlap
(Figure 3b). The use of LOCODOSY, here with manual
segmentation to separate regions of low and high intensity
(Figure 3a), allowed considerable clarification of the DOSY
spectrum and the assignment of several major components
(see the Supporting Information).

LOCODOSY is a new and powerful method for processing
DOSY data that with automatic segmentation and determination
of chemical rank is simple and effective to apply. It allows the
resolution of a considerably larger number of mixture compo-
nents than was previously possible, as well as cleaner separation of
overlapped spectra, although the known limits on resolution of
component spectra by multivariate methods apply in each window.
The data-processing time required depends on the number of
windows used and hence the number of decompositions per-
formed, but the use of the relatively fast SCORE and DECRA
multivariate fitting algorithms ensures that processing times are
modest (typically 2 min).
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Figure 3. (a) LOCODOSY results for a sample containing 10% D2O
and 90% Red Bull Sugarfree drink, with acetone as a reference. (b) HR-
DOSY results for the same sample. Data were acquired on a Varian
INOVA 400 MHz spectrometer using presaturation of the water signal.


